Bài \(3\). Nhị thức Newton trang \(33\) SGK toán lớp \(10\) tập \(2\) Nhà xuất bản Chân trời sáng tạo. Các em cùng Bumbii giải các bài tập sau.
Bài \(1\). Sử dụng công thức nhị thức Newton, khai triển các biểu thức sau:
\(a)\) \((3x + y)^4\); \(b)\) \((x \ – \ \sqrt{2})^5\).
Trả lời:
\(a)\) \((3x + y)^4 = (3x)^4 + 4. (3x)^3. y + 6. (3x)^2. y^2\)
\( + 4. (3x). y^3 + y^4\)
\(= 81x^4 + 108x^3 + 54x^2y^2 + 12xy^3 + y^4\).
\(b)\) \((x \ – \ \sqrt{2})^5 = (x + (\ – \ \sqrt{2}))^5\)
\(= x^5 + 5. x^4. (\ – \ \sqrt{2}) + 10. x^3. (\ – \ \sqrt{2})^2\)
\( + 10. x^2. (\ – \ \sqrt{2})^3 + 5. x. (\ – \ \sqrt{2})^4 + (\ – \ \sqrt{2})^5\)
\(= x^5 \ – \ 5 \sqrt{2}. x^4 + 20. x^3 \ – \ 20 \sqrt{2}. x^2 + 20. x \ – \ 4 \sqrt{2}\).
\(\)
Bài \(2\). Khai triển và rút gọn các biểu thức sau:
\(a)\) \((2 + \sqrt{2})^4\) \(b)\) \((2 + \sqrt{2})^4 + (2 \ – \ \sqrt{2})^4\);
\(c)\) \((1 \ – \ \sqrt{3})^5\).
Trả lời:
\(a)\) Áp dụng công thức nhị thức Newton ta có:
\((2 + \sqrt{2})^4 = 2^4 + 4. 2^3. (\sqrt{2}) + 6. 2^2. (\sqrt{2})^2\)
\( + 4. 2. (\sqrt{2})^3 + (\sqrt{2})^4\)
\(= 16 + 32 \sqrt{2} + 48 + 16 \sqrt{2} + 4\)
\(= 68 + 48 \sqrt{2}\).
\(b)\) Áp dụng công thức nhị thức Newton ta có:
\((2 + \sqrt{2})^4 = 2^4 + 4. 2^3. (\sqrt{2}) + 6. 2^2. (\sqrt{2})^2\)
\( + 4. 2. (\sqrt{2})^3 + (\sqrt{2})^4\)
\((2 \ – \ \sqrt{2})^4 = (2 + (\ – \ \sqrt{2}))^4\)
\( = 2^4 + 4. 2^3. (\ – \ \sqrt{2}) + 6. 2^2. (\ – \ \sqrt{2})^2\)
\(+ 4. 2. (\ – \ \sqrt{2})^3 + (\ – \ \sqrt{2})^4\)
Suy ra:
\((2 + \sqrt{2})^4 + (2 \ – \ \sqrt{2})^4\)
\(= 2. \left[ 2^4 + 6. 2^2. (\sqrt{2}^2) + (\sqrt{2})^4 \right]\)
\(= 2. ( 16 + 48 + 4) = 2. 68 = 136\)
\(c)\) \((1 \ – \ \sqrt{3})^5 = (1 + (\ – \ \sqrt{3}))^5\)
\(= 1^5 + 5. 1^4. (\ – \ \sqrt{3}) + 10. 1^3. (\ – \ \sqrt{3})^2\)
\( + 10. 1^2. (\ – \ \sqrt{3})^3 + 5. 1. (\ – \ \sqrt{3})^4 + (\ – \ \sqrt{3})^5\)
\(= \left[ 1 + 10. (\ – \ \sqrt{3}^2 + 5. (\ – \ \sqrt{3})^4 \right]\)
\(+ \left[ 5. (\ – \ \sqrt{3} + 10. (\ – \ \sqrt{3})^3 + (\ – \ \sqrt{3})^5 \right]\)
\(= (1 + 30 + 45) + (\ – \ 5. \sqrt{3} \ – \ 30 \sqrt{3} \ – \ 9 \sqrt{3})\)
\(= 76 \ – \ 44 \sqrt{3}\).
\(\)
Bài \(3\). Tìm hệ số của \(x^3\) trong khai triển \((3x \ – \ 2)^5\).
Trả lời:
Áp dụng công thức nhị thức Newton ta có:
\((3x \ – \ 2)^5 = (3x + (\ – \ 2))^5\)
\(= (3x)^5 + 5. (3x)^4. (\ – \ 2) + 10. (3x)^3 . (\ – \ 2)^2\)
\( + 10. (3x)^2. (\ – \ 2)^3 + 5. 3x. (\ – \ 2)^4 + (\ – \ 2)^5\)
\(= 243x^5 \ – \ 810x^4 + 1080x^3 \ – \ 720x^2 + 240x \ – \ 32\)
Khi đó hệ số của \(x^3\) trong khai triển là \(1080\).
Vậy hệ số của \(x^3\) trong khai triển trên là \(1080\).
\(\)
Bài \(4\). Chứng minh rằng \(C_5^0 \ – \ C_5^1 + C_5^2 \ – \ C_5^3 + C_5^4 \ – \ C_5^5 = 0\).
Trả lời:
Ta có:
\(C_5^0 \ – \ C_5^1 + C_5^2 \ – \ C_5^3 + C_5^4 \ – \ C_5^5\)
\(= C_5^0. 1^5 + C_5^1. 1^4. (\ – \ 1) + C_5^2. 1^3. (\ – \ 1)^2 + C_5^3. 1^2. (\ – \ 1)^3\)
\(+ C_5^4. 1. (\ – \ 1)^4 + C_5^5. (\ – \ 1)^5\)
\(= \left[1 + (\ – \ 1) \right]^5\)
\(= 0^5 = 0\) ( Nhị thức Newton) (đpcm)
\(\)
Bài \(5\). Cho \(A = \left \{a_1; a_2; a_3; a_4; a_5\right \}\) là một tập hợp có \(5\) phần tử. Chứng minh rằng số tập hợp con có số lẻ \((1; 3; 5)\) phần tử của \(A\) bằng số tập hợp con có số chẵn \((0; 2; 4)\) phần tử của \(A\).
Trả lời:
\(a)\) Ta có:
Số tập hợp con có \(x\) phần tử của \(A\) là số tổ hợp chập \(x\) của \(5\).
\(\Rightarrow\) Số tập hợp con có \(0\); \(1\), \(2\); \(3\), \(4\); \(5\) phần tử lần lượt là:
\(C_5^0; C_5^1; C_5^2; C_5^3; C_5^4; C_5^5\)
\(\Rightarrow\) Số tập hợp con có số lẻ \((1; 3; 5)\) phần tử là:
\(C_5^1 + C_5^2 + C_5^3 = 5 + 10 + 1 = 16\)
\(\Rightarrow\) Số tập hợp con có số chẵn \((0; 2; 4)\) phần tử là:
\(= C_5^0 + C_5^2 + C_5^4 = 1 + 10 + 5 = 16\)
Vậy suy ra ta có:
\(C_5^1 + C_5^2 + C_5^3 = C_5^0 + C_5^2 + C_5^4\) (đpcm).
Bài 3. Nhị thức Newton Bài 3. Nhị thức Newton
Xem bài giải trước: https://bumbii.com/bai-2-hoan-vi-chinh-hop-va-to-hop/
Xem bài giải tiếp theo: https://bumbii.com/bai-tap-cuoi-chuong-viii/
Xem các bài giải khác: https://bumbii.com/giai-toan-lop-10-nxb-chan-troi-sang-tao
Thông tin liên hệ & mạng xã hội:
Website: https://bumbii.com/
Facebook: https://www.facebook.com/bumbiiapp
Pinterest: https://www.pinterest.com/bumbiitech
Hạnh phúc đạt được khi bạn ngừng chờ đợi điều đó xảy ra và thực hiện các bước để biến nó thành hiện thực.