Chương 6 – Bài 21: Tính chất của dãy tỉ số bằng nhau trang 9 sách giáo khoa toán lớp 7 tập 2 NXB Kết nối tri thức với cuộc sống.
6.7. Tìm hai số x và y, biết: \(\displaystyle\frac{x}{9}=\displaystyle\frac{y}{11}\) và \(x + y = 40.\)
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\displaystyle\frac{x}{9}=\displaystyle\frac{y}{11}=\displaystyle\frac{x+y}{9+11}=\displaystyle\frac{40}{20}=2.\)
Suy ra \(x=9.2=18; \ y=11.2=22.\)
Vậy \(x = 18,\ y = 22.\)
\(\)
6.8. Tìm hai số x và y, biết: \(\displaystyle\frac{x}{17}=\displaystyle\frac{y}{21}\) và \(x – y = 8.\)
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\displaystyle\frac{x}{17}=\displaystyle\frac{y}{21}=\displaystyle\frac{x-y}{17-21}=\displaystyle\frac{8}{-4}=-2.\)
Suy ra \(x=17.(-2)=-34; \ y=21.(-2)=-42.\)
Vậy \(x = -34,\ y = -42.\)
\(\)
6.9. Tỉ số sản phẩm làm được của hai công nhân là 0,95. Hỏi mỗi người làm được bao nhiêu sản phẩm, biết rằng người này làm nhiều hơn người kia 10 sản phẩm?
Giải
Gọi x, y (sản phẩm) lần lượt là số sản phẩm của mỗi công nhân làm được (x < y).
Tỉ số sản phẩm làm được của hai công nhân là 0,95 nên
\(\displaystyle\frac{x}{y}=0,95=\displaystyle\frac{19}{20}\) hay \(\displaystyle\frac{x}{19}=\displaystyle\frac{y}{20}.\)
Vì người này làm nhiều hơn người kia 10 sản phẩm nên \(y-x = 10\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\displaystyle\frac{x}{19}=\displaystyle\frac{y}{20}=\displaystyle\frac{y-x}{20-19}=\displaystyle\frac{10}{1}=10.\)
Suy ra \(x=19.10=190,\ y=20.10=200.\)
Vậy số sản phẩm mỗi người làm được lần lượt là 190 sản phẩm và 200 sản phẩm.
\(\)
6.10. Ba 7A, 7B và 7C được giao nhiệm vụ trồng 120 cây để phủ xanh đồi trọc. Tính số cây trồng được của mỗi lớp, biết số cây trồng được của ba 7A, 7B và 7C tỉ lệ với 7; 8; 9.
Giải
Gọi x, y, z (cây) lần lượt là số cây ba 7A, 7B, 7C trồng được.
Vì cả ba lớp được giao trồng 120 cây nên x + y + z = 120.
Theo đề bài ta có x, y, z tỉ lệ với \(7;\ 8;\ 9\) nên ta có:
\(\displaystyle\frac{x}{7}=\displaystyle\frac{y}{8}=\displaystyle\frac{z}{9}.\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\displaystyle\frac{x}{7}=\displaystyle\frac{y}{8}=\displaystyle\frac{z}{9}=\displaystyle\frac{x+y+z}{7+8+9}=\displaystyle\frac{120}{24}=5.\)
Suy ra \(x = 7 . 5 = 35;\) \(y = 8 . 5 = 40;\) \(z = 9 . 5 = 45.\)
Vậy số cây ba 7A; 7B; 7C trồng được lần lượt là 35 cây; 40 cây; 45 cây.
\(\)
Xem bài giải trước: Bài 20: Tỉ lệ thức
Xem bài giải tiếp theo: Luyện tập chung trang 10
Xem thêm các bài giải khác tại: Giải Bài tập SGK Toán Lớp 7 – NXB Kết Nối Tri Thức Với Cuộc Sống
Thông tin liên hệ & mạng xã hội:
Website: https://bumbii.com/
Facebook: https://www.facebook.com/bumbiiapp
Pinterest: https://www.pinterest.com/bumbiitech