Bài 16. Đường trung bình của tam giác

Chương 4 – Bài 16. Đường trung bình của tam giác trang 50 sách bài tập toán lớp 8 tập 1 NXB Kết nối tri thức với cuộc sống. Các em cùng Bumbii giải các bài tập sau.

4.7. Tìm độ dài x, y trong hình vẽ dưới đây:

Giải

a) Xét ∆ABC có M, N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của ∆ABC.

Suy ra \(MN=\displaystyle\frac{1}{2}BC=\displaystyle\frac{1}{2}.10=5\) (tính chất đường trung bình của tam giác).

Vậy x = 5.

b) Ta có HI ⊥ PN và MN ⊥ PN nên HI // MN.

Xét ∆MNP có I là trung điểm của PN (PI = IN = 4) và HI // MN nên H là trung điểm của PM.

Do đó HM = HP = 5

Vậy y = 5.

\(\)

4.8. Cho tam giác DEF. Gọi H, K, I lần lượt là các trung điểm của DE, DF và EF. Chứng minh rằng tứ giác HKIE là hình bình hành.

Giải

Xét ∆DEF có: H là trung điểm DE; K là trung điểm DF nên HK là đường trung bình của ∆DEF.

Suy ra HK = \(\displaystyle\frac{1}{2}\)EF và HK // EF (tính chất đường trung bình của tam giác)

Mà EI = \(\displaystyle\frac{1}{2}\)EF (do I là trung điểm của EF) nên HK = EI.

Xét tứ giác HKIE có HK = EI và HK // EI (do HK // EF) nên tứ giác HKIE là hình bình hành.

\(\)

4.9. Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng: EI = DK.

Giải

Xét ∆ABC có E, D lần lượt là trung điểm của AB, AC nên DE là đường trung bình của ∆ABC.

Suy ra DE // BC và DE = \(\displaystyle\frac{1}{2}\)BC (tính chất đường trung bình của tam giác) (1).

Xét ∆ABC có I, K lần lượt là trung điểm của GB, GC nên IK là đường trung bình của ∆GBC.

Suy ra IK // BC và IK = \(\displaystyle\frac{1}{2}\)BC (tính chất đường trung bình của tam giác) (2).

Từ (1) và (2) suy ra DE // IK và DE = IK = \(\displaystyle\frac{1}{2}\)BC.

Tứ giác EDKI có DE // IK và DE = IK nên tứ giác EDKI là hình bình hành.

Suy ra EI = DK.

\(\)

4.10. Cho hình chữ nhật ABCD. Gọi D, E, F, G lần lượt là trung điểm các cạnh AB, BC, CD, DA. Tứ giác DEFG là hình gì? Vì sao?

Giải

Xét ∆ABC có: D, E lần lượt là trung điểm của AB và BC nên DE là đường trung bình của ∆ABC.

Suy ra DE = \(\displaystyle\frac{1}{2}\)AC và DE // AC (tính chất đường trung bình của tam giác).

Tương tự GF = \(\displaystyle\frac{1}{2}\)AC, DG = \(\displaystyle\frac{1}{2}\)BD, EF = \(\displaystyle\frac{1}{2}\)BD (tính chất đường trung bình của tam giác).

Mà ABCD là hình chữ nhật nên AC = BD nên DE = EF = FG = GD.

Tứ giác DEFG có DE = EF = FG = GD nên là hình thoi.

\(\)

Xem bài giải trước: Bài 15. Định lí Thalès trong tam giác

Xem bài giải tiếp theo: Bài 17. Tính chất đường phân giác của tam giác

Xem thêm các bài giải khác tại: Giải Bài Tập Toán Lớp 8 Kết Nối Tri Thức Với Cuộc Sống

Thông tin liên hệ & mạng xã hội:
Website: https://bumbii.com/
Facebook: https://www.facebook.com/bumbiiapp
Pinterest: https://www.pinterest.com/bumbiitech

0 0 đánh giá
Article Rating
Theo dõi
Thông báo của
guest

0 Bình luận
Cũ nhất
Mới nhất Được bỏ phiếu nhiều nhất
Phản hồi nội tuyến
Xem tất cả bình luận
0
Cùng chia sẻ bình luận của bạn nào!x
×